MOBIL(-P)
Intermediate Compiler Languages for
(Explicit Parallel) Imperative Languages

Internal Report

Jiirgen Vollmer!

FriWi Schroer?
Gesellschaft fir Mathematik und Datenverarbeitung

August 20, 1992°

'GMD Research Group at the University of Karlsruhe, Vincenz—Priefnitz—Strafie 1, D-7500 Karlsruhe 1,
Phone: +/49/721/6622-14, email: vollmer@karlsruhe.gmd.de

2GMD FIRST, D-1199 Berlin, Rudower Chaussee 5, +49/30/6704-4343, email: friwi@first.gmd.de

“Rev: 2.1, Status: released

Abstract

Mobil and its extension Mobil-P are the low level intermediate compiler languages of the Mocka / Mocka-P
Modula-2 | Modula-P compilers developed at the GMD in Karlsruhe. The programming language Modula-P a
superset of Modula-2 offers explicit parallelism on the language level, based on Hoare’s communication sequential
processes. Mobiland Mobil-P form the interface between the compiler front end (syntactic / semantic analysis
and transformation) and the code generator for a specific target processor. The semantics of Mobil and Mobil-P
are given in terms of an interpreter for the Mobil / Mobil-P instructions.

Contents

1 Introduction

1.1 Characteristics of Mobil and Mobil-P
1.2 Imtroduction into Mobil and Mobil-P
1.2.1 Operators 0 e
1.2.2 Attributes L
1.2.3 Arguments and result oL
1.2.4 Machine data types L
1.2.5 The Mobil memory model L
1.2.6 Views of Mobil
2 Definition of Mobil
2.1 The Mobil interpreter L
2.2 The Mobil instructions
2.2.1 Declarations.
2.2.2 General operations Lo
2.2.3 The Mobil Constants
2.2.4 Structured Constants
2.2.5 Address computation.o
2.2.6 Compiler generated variables oo
2.2.7 Memory access L.
2.2.8 Memory access and arithmetic L Lo
2.2.9 Integer arithmetic
2.2.10 Real arithmetic o
2.2.11 Set arithmetic e
2.2.12 MiSC CONVETSIONS . . . o v v v v it et e e e e e
2.2.13 CompariSions oL e e e
2.2.14 Control flow e
2.2.15 Procedure call and parameter passingo
2.3 Generating Mobil by MOCKA
2.3.1 Mobil Grammar
2.3.2 Procedure call
2.3.3 Parameter passing
2.3.4 Procedure mesting

3 Definition of Mobil-P

3.1 The Mobil-P interpreter L
3.2 The Mobil-P instructionso
3.2.1 Declarations.
3.2.2 Channel instructions
3.2.3 Timerinstructions
3.2.4 Parallel statements L
3.2.5 Replicationo
3.2.6 The ALT statement
3.3 Generating Mobil-P by MOCKA-P

Rev: 2.1, released, June 09, 1993 mobil.tex

24
24
25
25
26
27
28
29
30
31

MOBIL(-P)

3.3.1 The Mobil-P grammar
3.3.2 Parallel statements
3.3.3 The ALT statement 32
3.4 Transputer machine instructions

Bibliography 33

2 mobil.tex Rev: 2.1, released, June 09, 1993

Chapter 1

Introduction

1.1 Characteristics of Mobil and Mobil-P

Mobil-P [Vollmer 89a] is the low level intermediate language of the Modula-P [Vollmer 89b, Vollmer * 21 92]
compiler system Mocka-P. Mocka-P itself is based on the Modula-2 [Wirth 85] compiler system Mocka'
[Schroer 88a), with the intermediate language Mobil? [Schroer 88b].

The compilation process of Mocka i1s divided into three phases: The parser constructs an abstract syntax tree,
using the intermediate language ASTA. After the semantic analysis has taken place, this is transformed into
the intermediate language Mobil®. A code generator translates a Mobil program into an assembly language
program.

Several code generators for Mobil and Modula-2 has been produced, either by hand writing (MC68K,
VAX, Transputer) or generating using the BEG code generator generator tool [Emmelmann ¢ 97 89] (MIPS,
SPARC,MC68K, Transputer). The flexibility of the Mobil intermediate language has been proven by extending
it to Mobil-P and by adding Mobil back ends to a different (Pascal} front end.

Mobil has three characteristics, it is:

1. low level,
2. machine independent,
3. fully typed.

Low level means that the block structure of the source language is flattened, loops are translated into (un)
conditional jumps, boolean expressions are mapped into jump cascades for implementing the short cut
evaluation semantics of Modula-2. The access path for variables and memory access is made completely
explicit. Local modules are also flattened and the body is transformed to an ordinary procedure, called
automatically when the body of the enclosing module is called. All bodies of implementation modules are
called according to the Modula-2 rules, when initiating the main program.

Machine independence is achieved by using machine instructions in a three address format and having only
the notion of data and address operands, which may be seen as an unbound set of abstract registers. Also
a simple but general storage model is used.

Typed is Mobil in the sense that it knows several scalar machine types like short and long signed quantities,
but their actual sizes is not specified by Mobil (but by supporting procedures). Also for each operand of
an operator the type must be given.

1.2 Introduction into Mobil and Mobil-P

A Mobil module is a sequence of procedure definitions enclosed in Begin Module and EndModule. A procedure
definition is a sequence of instructions enclosed in BeginProcedure and EndProcedure.

TModula-2 COmpiler KArlsruhe
?Modula-2 Backend Intermediate Language
3sometimes Mobil stands for both: Mobil and Mobil-P.

Rev: 2.1, released, June 09, 1993 mobil.tex 3

MOBIL(-P) 1 Introduction_

A Mobil instruction has the form:
OPERATOR ATTRIBUTES ARGUMENTS RESULT.

All items except the first may be missing.
A Mobil instruction is issued by the compilers front end using a procedure call

OPERATOR (ATTRy, ..., ATTR,,, ARG, ..., ARG,, RESULT).

1.2.1 Operators
The OPERATOR together with ATTRIBUTES the define the action to be performed.

There are two kinds of operators:

Declarations introduce unique identifications for program objects like modules, procedures, code labels, string
addresses, etc. These unique identifications are used subsequently in the Mobil program to access these
objects. Each object must be declared before it is used.

Actions Are the instructions of the abstract machine. They either return a single result (output) or not. In
the latter case they are called Mobil statements.

1.2.2 Attributes

Attributes specify properties of the Mobil operators and operands, like their type, external value, or size of data
entities.
There are several kinds of attributes:

Mode specifies the type of an operand.
Integers and cardinals are used to specify things like sizes and alignments of storage entities.

Relation is used to specify the relation of a comparison operator.

TYPE Relation = (RelEqual
,RelUnequal
,RellLess
,RelLessOrEqual
,RelGreater

,RelGreaterOrEqual

))

ModuleKind TYPE ModuleKind = (ProgramModule, ImplementationModule, ProcessModule), specifies the
kind of module currently compiled.

Labels are used as symbolic addresses of a specific piece of code.

Modulelndex , ProcedureIlndex, and StringIndex are used to identify modules, procedures and string
constants.

and some more. The attributes and their meaning are described together with the operator that uses them.

1.2.3 Arguments and result

ARGUMENTS is alist of operands computed as output of previous instructions and used here as input. RESULT
is the operand computed by the instruction. Each operand is defined exactly once as a result and used exactly
once as an argument. Hence, Mobil instructions for expressions are called in postfix order by the front end.
Mobil distinguishes between two classes of operands: Data operands and Address operands. Data operands are
used to hold values of different machine types that are fetched from memory using a Content instruction or that
are result from some computation.

Address operands provide access to memory locations. Pointer values are considered as data, they can be
retyped to serve as addresses.

4 mobil.tex Rev: 2.1, released, June 09, 1993

1.2.5 The Mobil memory model MOBIL(-P)_

1.2.4 Machine data types
Mobil knows the following machine data operands types, also called Modes:

UnsignedByte
UnsignedWord
UnsignedLong

.
[]

.

¢ SignedByte
¢ SignedWord
e SignedLong
¢ FloatShort

e FloatLong

Each data object, whether scalar or structured, has two special properties:

1. its size, and

2. an alignment.

Size gives the number of bytes needed to store a value of this type. This usually also defines the range of values
representable by that data type. The alignment specifies the kind of addresses, at which a value may be stored
in memory. The alignment requirement is usually a small number out of the set {1,2,4,8,16}. An alignment of
4, for example, specifies, that these data objects may be stored in memory only on addresses, which are divisible
by 4 without of a reminder. More formally: MemAdr(z) MOD Alignment = 0, where z is of type Mode.

The alignment requirement for structured source language types is usually the maximum of the component
types.

The mapping from source language types to machine language types, size and alignment is specified by a set of
procedures and constants, which are part of a code generator description for a given hardware. For example,
the Modula-2 front end and the Transputer (T 800) back end perform the following mapping:

Modula data type value range Mobil Transputer
size alignment
BOOLEAN 0 = FALSE UnsignedByte 1 byte 1
1 =TRUE
CHAR 0.. 255 UnsignedByte 1 byte 1
coded as ASCII
enumeration 0 .. 255 elements UnsignedByte 1 byte 1
256 .. 216 — 1 UnsignedWord 4 byte 2
216,232 1 UnsignedLong 4 byte 4
BITSET 0.. 31 UnsignedLong 4 byte 4
SHORTCARD 0. 2151 UnsignedWord 4 byte 4
CARDINAL 0. 2% -1 UnsignedLong 4 byte 4
LONGCARD 0. 2% -1 UnsignedLong 4 byte 4
SHORTINT —215 215 1 SignedWord 4 byte 4
INTEGER —231.231 _1 SignedLong 4 byte 4
LONGINT —231.231 _1 SignedLong 4 byte 4
POINTER —231. 231 _1 SignedLong 4 byte 4
ADDRESS —231,.231 1 SignedLong 4 byte 4
REAL FloatShort 4 byte 4
LONGREAL FloatLong 4 byte 4

1.2.5 The Mobil memory model

The memory of the abstract Mobil machine is partioned into frames.

For each separately compiled (source language) module there is a module frame (STATICFRAME [module]).
The frame contains the static variables of the module. Objects in that frame are accessed by a Static Variable
instructions which specifies the frame of the module and offset of the object in the frame.

For each procedure there is a local variable frame (VARFRAME). The frame contains the local variables of the
procedure. Objects in that frame are accessed by a LocalVariable instruction which specifies the offset in the

Rev: 2.1, released, June 09, 1993 mobil.tex 5

MOBIL(-P) 1 Introduction_

frame. If the variable belongs to a frame of a procedure different from the current one (i.e. a procedure statically
surrounding the current one in the original source program), it is accessed by a FrameBase instruction, which
specifies the static nesting level of the procedure and returns the address of that frame. The GlobalVariable
instruction uses the returned variable frame address and the variable’s offset in that frame to return the address
of the variable.

For each procedure there is a parameter frame (PARAMFRAME). The frame contains the parameters passed
to the procedure. It is established by the caller and filled using Pass instructions. Objects in that frame are
accessed using LocalParam instructions (corresponding to LocalVariable instructions). If the object belongs
to the parameter frame of a procedure different from the current one is, it is accessed using a ParamBase
instruction (corresponding to the FrameBase instruction) and GlobalParam instruction using the frame address.
Compiler created variables are called tempos. There are two classes of Tempos: DataTempos may be used to
store data, AddressTempos to store addresses. Their scope is bound to the procedure, they are declared in.
Structured values of the source language are mapped to sequences of scalar machine types. For each field the
alignment requirements of the fields type must be fulfilled®. The entire data object is accessed by the address
of its first field. The other fields are accessed relative to this first object. These offsets are either computed at
compile time (records, and arrays with constant indices) by AddOffset or at runtime (arrays) by Subscript.

1.2.6 Views of Mobil

Two viewpoints may be taken concerning Mobil. First, it may be seen as an instruction set of an abstract
machine having an arbitrary number of registers. Second, a Mobil program is a forest (sequence) of expression
trees. Operands represent edges, instructions are the nodes of the tree. Mobil statements form the root of a
tree. Instructions without arguments from the tree leaves.

The first view leads to a very easy implementation of a code generator: just expand each Mob:il instruction into
some target processor instructions and map operands to real target registers, which are allocateds “on the fly”.
The second view is more appropriate for a Mobil optimizer, which transforms a Mob:l program into a “better”
one, or for a more sophisticated code generator (like BEG) which does tree pattern matching to generate less
expensive code for several tree nodes (Mobil instructions) together.

4There are no “packed” data types.

6 mobil-2.tex Rev: 2.1, released, June 09, 1993

Chapter 2

Definition of Mobil

2.1 The Mobil interpreter

The semantics of instructions is described by specifying an interpreter for Mobil.
The interpreter uses the following data structures:

PC (program counter) refers to the Mobil instruction to be executed next.

VARBASE [i] is the base address of the VARFRAME for the procedure at static nesting level 2.
PARMEBASE [i] is the base address of PARAMFRAME for the procedure at static nesting level 7.
CALLBASE is the address of a parameter frame that is currently used to pass parameters.
FUNRES is the result of the last function call.

NEST is the static nesting level of the current procedure.

M is the untyped memory of the machine. M [adr;n] denotes a slice of n bytes starting at address adr. The
operation ALLOCATE (adr, size) creates a new slice in M with size and returns its address in adr.

STACK is used to save and restore administration data. PUSH and POP operations refer to the stack.
DJi] is the +-th Data tempo of the current procedure.

AJi] is the i-th Address tempo of the current procedure.

The Mobil machine knows two kinds of registers classes, data and address registers. The data registers may hold
values of several types according to the Mobil Modes. There are an arbitrary number of such registers. They
are single assignment and single use registers. op.mode describes, that the register is used with the given mode.
Additionally op.adr, op.pointer specifies that the value is an address, op.bitset s interpreted as a BITSET value,
mapped to some machine type.

The Mobil machine knows the usual (un)signed integer and floating arithmetic. Some operators are specified
by describing them in terms of the corresponding Modula-2 functionality.

2.2 The Mobil instructions

IN (OUT) specifies that this is an input (result) operand. ATTR indicates an attribute. The keyword PROCE-
DURE is used to mark Mobil declarations from the other instructions. Since they don’t return a data oraddress
operand, their results are marked with VAR. The inputs of declarations are not specially marked.

Attributes and arguments of Mobil instructions marked with a { are used only if the front end compiles a
Modula-P program. For Modula-2 they are not needed.

Rev: 2.1, released, June 09, 1993 mobil-2.tex 7

MOBIL(-P) 2 Definition of Mobil_

2.2.1 Declarations

All results of a declaration are unique for the current compiled compilation unit, except for the declaration of
tempos. The scope of a tempo is bound the procedure declared it.

PROCEDURE DeclareModule

extern: BOOLEAN
T kind: ModuleKind
CompUnitName: ARRAY OF CHAR
VAR ref: ModuleIndex

extern = TRUE, iff the module is another imported compilation unit.

PROCEDURE DeclareProcedure
extern: BOOLEAN
IsFunction: BOOLEAN
ProcName: ARRAY OF CHAR
ProcNumber: SHORTCARD

module: ModuleIndex

level: SHORTCARD

father: ProcIndex
VAR, ref: ProcIndex

extern = TRUE, #ff the procedure is imported from an other compilation unit. IsFunction = TRUE, iff the
procedure 1s a function. Fach procedure of an compilation unit has a unique ProcNumber. module specifies
the module, the procedure is declared in. level specifies the nesting level of the procedure. Global procedures
get level 0. If the procedure is declared local to another, father specifies that procedure.

PROCEDURE DeclareString
length: SHORTCARD
string: ARRAY OF CHAR
VAR ref: Stringlndex
length gives the number of significant characters of the string.

PROCEDURE DeclareLabel
VAR lab: Label

Labels are used for symbolic addresses of a piece of code.

PROCEDURE DeclareDataTempo
mode: Mode
VAR tempo: DatalTempo
The front end may introduce temporary storage for compiler generated variables. The scope of a data tempo
s bound to the current compiled procedure.

PROCEDURE DeclareAddressTempo
VAR tempo: AddressTempo
The front end may introduce temporary storage for compiler generated variables. The scope of a address

tempo is bound to the current compiled procedure.

2.2.2 General operations

BeginModule
ATTR ModuleName: ARRAY OF CHAR
ATTR VarSize: LONGINT
ATTR{ kind: ModuleKind

Indicates the beginning of a module. ModuleName is the name of the module. VarSize is the size of the
module frame (in bytes).

EndModule
Indicates the end of module.

8 mobil-2.tex Rev: 2.1, released, June 09, 1993

2.2.3 The Mobil Constants MOBIL(-P)_

BeginProcedure
ATTR index: ProcIndex
ATTR. level: SHORTCARD
ATTR VarSize: LONGINT

ATTR ParamSize: LONGINT

Indicates the beginning of a procedure. index s the index of the procedure as defined by a DeclareProcedure
directive. level is the static nesting level of the procedure. VarSize is the size of procedure frame (in bytes).
ParamSize is the size of the procedures parameter frame (in bytes).

PUSH (NEST);

PUSH (PARAMBASE [levell);

PUSH (VARBASE [level]);

NEST := level;

PARAMBASE [level] := CALLBASE;

ALLOCATE (VARBASE [level], VarSize);

EndProcedure

Indicates the end of a procedure.

CopyOpenArray
ATTR DataOffset: LONGINT
ATTR HighOffset: LONGINT
ATTR elemsize: LONGINT

ATTR} IsGlobalProcess: BOOLEAN

Initial treatment of “open array” value parameters (the instructions is issued for each open array value
parameter at the beginning of the procedure). Open arrays are passed as as two parameters:

(1) the address of the data vector and

(2) the value of the HIGH function applied to the array.

DataOffset s the offset of parameter (1) and HighOffset is the offset of parameter (2) in the parameter
frame of the actual procedure. The instruction creates a copy of the data vector and changes the first
parameter such that it points to the copy.

1IsGlobalProcessBody = TRUE, iff this instruction is emitied in the body procedure of a PROCESS
MODULE.

high, size : CARDINAL;

source, target : address;
high := M [PARAMBASE [NEST] + HighOffset; size (address)];
size := (high+1) * elemsize;

source := M [PARAMBASE [NEST] + DataOffset; size (address)];
ALLOCATE (target, size);

M [target; size] := M [source; sizel;
M [PARAMBASE [NEST]+ DataOffset; size (address)] := target;
Mark

ATTR line: SHORTCARD
ATTR col: SHORTCARD

Passes the current source position to the Mobil program.

SkipData SkipAddress
IN op: DataOperand IN op: AddressOperand
No action, ”eats” not needed data values. Ignore No action, "eats” not needed address values. Ignore
the value of op. the value of op.
SKIP; SKIP;

Rev: 2.1, released, June 09, 1993 mobil-2.tex 9

MOBIL(-P)

2 Definition of Mobil_

2.2.3 The Mobil Constants

Returns the REAL constant c.

ShortCardConstant LongCardConstant
ATTR SHORTCARD ATTR ¢ LONGCARD
ouT result: DataOperand ouT result: DataOperand
Returns the SHORTCARD constant c. Returns the LONGCARD constant c.
result.shortcard := c; result.longcard := c;
ShortIntConstant LongIntConstant
ATTR ¢ SHORTINT ATTR ¢ LONGINT
ouT result: DataOperand ouT result: DataOperand
Returns the SHORTINT constant c. Returns the LONGINT constant c.
result.shortint := c; result.longint := c;
RealConstant LongRealConstant
ATTR ¢ REAL ATTR ¢ LONGREAL
ouT result: DataOperand ouT result: DataOperand

Returns the LONGREAL constant c.

Returns the BITSET constant c.

result.real := c; result.longreal := c;
CharConstant BoolConstant

ATTR «c: CHAR ATTR val: BOOLEAN
ouT result: DataOperand ouT result: DataOperand
Returns the CHAR constant c. Returns the BOOLEAN constant c.
result.char := c; result.boolean := c;
SetConstant NilConstant

ATTR ¢ BITSET OUT result: DataOperand
ouT result: DataOperand Returns the POINTER constant NIL.

result.pointer := c;

result.bitset := c;
ProcedureConstant
ATTR index: Proclndex
ouT result: DataOperand

Returns a reference to the procedure given by index.
assign it to a procedure variable or parameter.
result.label := PROCSTART (index);

This reference may be used to call the procedure or to

2.2.4 Structured Constants

StringAddr
ATTR index: Stringlndex
ouT result: AddressOperand

result := STRINGADDR (index);

Returns the address of a string constant designated by index.

2.2.5 Address computation

StaticVariable
ATTR module: Modulelndex
ATTR. offset: LONGINT
ouT result: AddressOperand

Returns the address of a variable located in a module frame. module s the corresponding module. offset s

the offset of the variable in the frame.
result := STATICBASE [module] + offset;

10

mobil-2.tex

Rev: 2.1, released, June 09, 1993

2.2.5 Address computation MOBIL(-P)_

FrameBase

ATTR proc: ProcIndex

ATTR level: SHORTCARD

ouT result: AddressOperand

Returns a reference to a procedure frame. In the original source program the procedure was declared at
nesting level level and enclosed the current one. Used to access a GlobalVariable.

result := VARBASE [level];

ParamBase

ATTR proc: ProcIndex

ATTR level: SHORTCARD

ouT result: AddressOperand

Returns a reference to the parameter frame of a procedure. In the original source program the procedure
was declared at nesting level level and enclosed the current one. Used to access a GlobalValueParam,
GlobalVarParam or GlobalOpenArrayValueParam.

result := PARAMBASE [levell;

LocalVariable
ATTR offset: LONGINT
ouT result: AddressOperand

Returns the address of a variable located in the frame of the current procedure. offset is the offset of the
variable in the frame.

result := VARBASE [NEST] + offset;

GlobalVariable
ATTR offset: LONGINT
IN frame: AddressOperand

ouT result: AddressOperand

Returns the address of a variable located in the procedure frame indicated by frame. offset is the offset of
the variable in the frame.

result := frame + offset;

LocalValueParam
ATTR offset: LONGINT
ouT result: AddressOperand
Returns the address of a value parameter. The Parameter is located in the parameter frame of the current
procedure. offset s the offset of the item in the frame.
result := PARAMBASE [NEST] + offset;

LocalVarParam

ATTR offset: LONGINT

ouT result: AddressOperand

Returns the address of a var parameter. The address is located in the parameter frame of the current
procedure. offset is the offset of the item in the frame.

result := M [PARAMBASE [NEST] + offset; size (address)];

GlobalValueParam
ATTR offset: LONGINT
IN base: AddressOperand

ouT result: AddressOperand

Returns the address of a value parameter. The parameter is located in the parameter frame frame. offset
s the offset of the item in the frame.
result := frame + offset;

Rev: 2.1, released, June 09, 1993 mobil-2.tex 11

MOBIL(-P) 2 Definition of Mobil_

GlobalVarParam
ATTR offset: LONGINT
IN frame: AddressOperand

ouT result: AddressOperand

Returns the address of a var parameter . The address is located in the parameter frame frame. offset is the
offset of the item in the frame.
result := M [frame + offset; size (address)];

LocalOpenArrayValueParam

ATTR offset: LONGINT

ouT result: AddressOperand

Returns the address of a data vector passed as an “Open Array”. The address is located in the parameter
frame of the current procedure. offset is the offset of the item in the frame.

result := M [PARAMBASE [NEST] + offset; size (address)];

GlobalOpenArrayValueParam

ATTR offset: LONGINT

IN frame: AddressOperand

ouT result: AddressOperand

Returns the address of a data vector passed as an “Open Array”. The address is located in the parameter
frame frame. offset is the offset of the item in the frame.

result := M [frame + offset; size (address)];
AddOffset

ATTR offset: LONGINT

IN BaseOp: AddressOperand

ouT result: AddressOperand

Returns the address of a subobject. BaseOp is the address of the containing object. offset is the offset of
subject inside the containing object.

result := BaseOp + offset;

Subscript

ATTR IndexMode: Mode
ATTR LwbMode: Mode
ATTR UpbMode: Mode
ATTR. ElemSize: LONGINT

IN BaseOp: AddressOperand
IN IndexOp: DataOperand
IN LwbOp: DataOperand
IN UpbOp: DataOperand
ouT result: AddressOperand

Returns the address of an array element. BaseOp is the address of the array, IndexOp is the index (with
mode IndexMode). LwbOp and UpbOp specify lower and upper bound of the array (with modes LwbMode
and UpbMode). ElemSize is the size of the array elements (in bytes).

result := BaseOp + (IndexOp.IndexMode - LwbOp.LwbMode) * ElemSize;

UsePointer

IN op: DataOperand

OUT result: AddressOperand

Returns the POINTER wvalue op as address.
result := op.pointer;

12

mobil-2.tex Rev: 2.1, released, June 09, 1993

2.2.8 Memory access and arithmetic

MOBIL(-P)_

2.2.6 Compiler generated variables

Stores the wvalue giwen by op wn the temporary

AssignDataTempo AssignAddressTempo

ATTR mode: Mode ATTR tempo: AddressTempo

ATTR tempo: DataTempo IN op: AddressOperand

IN op: DataOperand Stores the address given by op in the temporary

tempo.

tempo.mode is the mode of op. A [tempo] := op;
D [tempo] := op.mode;

UseDataTempo UseAddressTempo
ATTR mode: Mode ATTR tempo: AddressTempo
IN tempo: DataTempo ouT result: AddressOperand
ouT result: DataOperand Returns the address stored in the temporary tempo.
Returns the value stored in the temporary tempo. result.mode := A [tempo];
mode is the mode of tempo.
result.mode := D [tempo];

2.2.7 Memory access

Assign AssignLong
ATTR mode: Mode ATTR size: LONGINT
IN lhs: AddressOperand IN lhs: AddressOperand
IN rhs: DataOperand IN rhs: AddressOperand

Assigns the value given by rhs o the storage lo-
cation given by lhs.mode specifies the mode of the
value.

Assigns the value stored at the address given by rhs
to the storage location given by lhs. size specifies
the length of the value (in bytes).

result.mode := M [op; size (mode)];

M [1lhs; size (mode)] := rhs.mode; M [lhs; size] := M [rhs; size];
Content

ATTR mode: Mode

IN op: AddressOperand

ouT result: DataOperand

Returns the value stored at the address given by op. mode specifies the mode of the value.

2.2.8 Memory access and arithmetic

incremented by one. mode is the mode the object at
address addr.

X : mode;

x := M[addr; size(mode)];
M[addr;size(mode)] := x+1;

Incl Inc2
ATTR mode: Mode ATTR mode: Mode
IN addr: AddressOperand IN addr: AddressOperand
The value at the storage location given by addr s IN val: DataOperand

Rev: 2.1, released, June 09, 1993

The value at the storage location given by addr s
incremented by val. mode is the mode the object at
address addr.

X : mode;

M[addr.adress; size (mode)];
M[addr.adress;size(mode)] :=

X =

x+val.mode;

mobil-2.tex 13

MOBIL(-P)

2 Definition of Mobil_

Decl Dec2
ATTR mode: Mode ATTR mode: Mode
IN addr: AddressOperand IN addr: AddressOperand
The value at the storage location given by addr s IN val: DataOperand

decremented by one. mode is the mode the object
at address addr.

The value at the storage location given by addr s
decremented by val. mode is the mode the object at

X : mode; address addr.

x := M[addr.adress; size(mode)]; X : mode;

M[addr.adress;size(mode)] :=x-1; x := M[addr.adress;size (mode)];
M[addr.adress;size(mode)] := x-val.mode;

Incl Excl

ATTR mode: Mode ATTR mode: Mode

IN addr: AddressOperand IN addr: AddressOperand

IN val: DataOperand IN val: DataOperand

mode IN Number. 0 < wval < 31, all other is an
error, is not checked.

The value val is included into the BITSET value at
the storage location given by addr. mode specifies
the mode of val.

x : bitset;

x := M[addr;size(bitset)];

mode IN Number. 0 < wval < 31, all other is an
error, is not checked.

The value val is excluded from the BITSET value at
the storage location given by addr. mode specifies
the mode of val.

x : bitset;

x := M[addr; size(bitset)];

M[addr;size(bitset)] := x+val.mode; M[addr;size(bitset)] := x-val.mode;
2.2.9 Integer arithmetic
FixedNegate FixedPlus
ATTR mode: Mode ATTR mode: Mode
IN op: DataOperand IN opl: DataOperand
ouT result: DataOperand IN op2: DataOperand
Returns the negated (unary minus) value of op. ouT result: DataOperand

mode is the mode of the argument and the result.

Returns the sum of opl and op2. mode is the mode

result.mode := - op.mode; of the arguments and the result.
result.mode := opl.mode + op2.mode;
FixedMinus FixedMult
ATTR mode: Mode ATTR mode: Mode
IN opl: DataOperand IN opl: DataOperand
IN op2: DataOperand IN op2: DataOperand
ouT result: DataOperand ouT result: DataOperand

Returns the result of subiracting op2 from opl.
mode is the mode of the arguments and the result.
result.mode := op2.mode + opl.mode;

Returns the result of multiplying opl and op2.
mode is the mode of the arguments and the result.
result.mode := opl.mode * op2.mode;

FixedDiv FixedMod
ATTR mode: Mode ATTR mode: Mode
IN opl: DataOperand IN opl: DataOperand
IN op2: DataOperand IN op2: DataOperand
ouT result: DataOperand ouT result: DataOperand

Returns the result of dividing opl by op2. Integer
division is used. mode is the mode of the arguments
and the result.

result.mode := opl.mode DIV op2.mode;

Returns the remainder of dividing opl by op2.
mode is the mode of the arguments and the result.
result.mode := opl.mode MOD op2.mode;

14

mobil-2.tex

Rev: 2.1, released, June 09, 1993

2.2.11 Set arithmetic

MOBIL(-P)_

FixedAbs
ATTR mode: Mode
IN op: DataOperand
ouT result: DataOperand
Returns ABS(op). mode is the mode of the argument and the result.
result.mode := ABS(op.mode);

2.2.10 Real arithmetic

FloatNegate FloatPlus

ATTR mode: Mode ATTR mode: Mode

IN opl: DataOperand IN opl: DataOperand
ouT result: DataOperand IN op2: DataOperand
Returns the negated (unary minus) value of op. ouT result: DataOperand

mode is the mode of the argument and the result.

Returns the sum of opl and op2. mode is the mode

Returns the result of subiracting op2 from opl.
mode is the mode of the arguments and the result.

result.mode := - op.mode; of the arguments and the result.
result.mode := opl.mode + op2.mode;

FloatMinus FloatMult

ATTR mode: Mode ATTR mode: Mode

IN opl: DataOperand IN opl: DataOperand

IN op2: DataOperand IN op2: DataOperand

ouT result: DataOperand ouT result: DataOperand

Returns the result of multiplying opl and op2.

mode is the mode of the arguments and the result.

result.mode := op2.mode + opl.mode; result.mode := opl.mode * op2.mode;
FloatDiv FloatAbs

ATTR mode: Mode ATTR mode: Mode

IN opl: DataOperand IN opl: DataOperand

IN op2: DataOperand ouT result: DataOperand

ouT result: DataOperand Returns ABS(op). mode is the mode of the argu-

Returns the result of dividing opl by op2. mode is
the mode of the arguments and the result.
result.mode := opl.mode / op2.mode;

ment and the result.
result.mode := ABS(op.mode);

2.2.11 Set arithmetic
SetUnion SetDifference
IN opl: DataOperand IN opl: DataOperand
IN op2: DataOperand IN op2: DataOperand
OUT result: DataOperand OUT result: DataOperand

rceAUB&SrxeAVeeEB

Returns the union of the BITSET operands opl and
op2.

result.bitset:=opl.bitset+op2.bitset;

rEA-Bore ANz ¢ B

Returns of subtracting the BITSET operands opl
and op2.
result.bitset:=opl.bitset-op2.bitset;

Rev: 2.1, released,

June 09, 1993

mobil-2.tex

15

MOBIL(-P)

2 Definition of Mobil_

reANB&Srxe ANz EB

Returns the intersection of the BITSET operands
opl and op2.
result.bitset:=opl.bitset*op2.bitset;

SetIntersection SetSymDifference
IN opl: DataOperand IN opl: DataOperand
IN op2: DataOperand IN op2: DataOperand
OUT result: DataOperand OUT result: DataOperand

reA/Bes(ze ANz ¢ B)V(z¢g ANz EB) &
xr = A xor B when A, B interpreted as bit vectors.
Returns the set symmetrical difference of the BI'T-
SET operands opl and op2.
result.bitset:=opl.bitset/op2.bitset;

SetPlusSingle
ATTR ElemMode: Mode
IN SetOp: DataOperand
IN ElemOp: DataOperand
ouT result: DataOperand

ts the mode of ElemQOp.

Returns a BITSET, which is obtained by including the element ElemOp into the BITSET SetOp. ElemMode

result.bitset:=SetOp.bitset+{ElemOp.ElemMode};

SetPlusRange
ATTR LwbMode: Mode
ATTR UpbMode: Mode
IN SetOp: DataOperand
IN LwbOp: DataOperand
IN UpbOp: DataOperand
ouT result: DataOperand

result.bitset := SetOp.bitset + { x :

Returns a BITSET, which is obtained by including the elements in the range [LwbOp ... UpbOp] inio the
BITSET SetOp. LwbMode is the mode of LwbOp, UpbMode is the mode of UpbOp.
LwbOp.LwbMode < x < UpbOp.UpblMode};

2.2.12 Misc conversions

Cap Float
IN op: DataOperand IN op: DataOperand
OUT result: DataOperand OUT result: DataOperand

lower case letters to upper case letters
Returns CAP(op).
result.char := CAP(op.char);

converts CARDINAL value to a REAL value
Returns FLOAT(op).
result.FloatShort:=FLOAT(op.UnsignedLong) ;

Trunc Adr
ATTR opmode: Mode ATTR arg: AddressOperand
ATTR. resultmode: Mode ouT result: DataOperand
IN op: DataOperand Returns the address defined by op as DataTempo.
ouT result: DataOperand result.pointer := op

converts REAL value to a CARDINAL value
Returns FLOAT(op).

opmode is the mode of op, resultmode s the mode
of the result.
result.UnsignedLong:=FLOAT(op.FloatShort);

16

mobil-2.tex

Rev: 2.1, released, June 09, 1993

2.2.13 Comparisions MOBIL(-P)_

Coerce

ATTR premode: Mode

ATTR postmode: Mode

IN op: DataOperand

ouT result: DataOperand

Returns the value given by op, which has mode premode, converted into a representation with mode
postmode.

result.postmode := op.premode;
Check

ATTR IndexMode: Mode

ATTR LwbMode: Mode

ATTR UpbMode: Mode

ATTR CheckLwb: BOOLEAN

ATTR CheckUpb: BOOLEAN

IN IndexOp: DataOperand

IN LwbOp: DataOperand

IN UpbOp: DataOperand

ouT result: DataOperand

Checks (LwbOp < IndexOp) if CheckLwb is TRUE. Checks (IndexOp < UpbOp) if CheckUpb is TRUE.
Returns IndexQp as result.

IF CheckLwb AND NOT (LwbOp.LwbMode <= IndexOp.IndexMode) THEN ABORT END;

IF CheckUpb AND NOT (IndexOp.IndexMode <= UpbOp.UpbMode) THEN ABORT END;
result.IndexMode := IndexOp.IndexMode;

2.2.13 Comparisions

FixedCompare FloatCompare
ATTR mode: Mode ATTR mode: Mode
ATTR rel: Relation ATTR rel: Relation
IN opl: DataOperand IN opl: DataOperand
IN op2: DataOperand IN op2: DataOperand
ouT result: DataOperand ouT result: DataOperand

Compares opl and op2 according to relation rel.
Returns a BOOLEAN walue indicating the result.
mode is the mode of the arguments.

Compares opl and op2 according to relation rel.
Returns a BOOLEAN walue indicating the result.
mode is the mode of the arguments.

result.boolean := opl.mode rel op2.mode; result.boolean := opl.mode rel op2.mode;
PointerCompare TestOdd

ATTR rel: Relation ATTR mode: Mode

IN opl: DataOperand ATTR cond: BOOLEAN

IN op2: DataOperand IN opl: DataOperand

ouT result: DataOperand ouT result: DataOperand

Compares the POINTER values opl and op2 ac-
cording to relation vel. Returns a BOOLEAN value
indicating the result
result.boolean :=

opl.pointer rel op2.pointer;

Tests whether ODD(op) evaluates to cond. Returns
a BOOLEAN walue indicating the result.
result.boolean := 0DD(op.mode) = cond;

Rev: 2.1, released,

June 09, 1993

mobil-2.tex

17

MOBIL(-P) 2 Definition of Mobil_

SetCompare
ATTR rel: Relation
IN opl: DataOperand
IN op2: DataOperand

ouT result: DataOperand

Compares the BITSET operands opl and op2 according to relation rel. Returns a BOOLEAN wvalue indi-
cating the result. mode is the mode of the arguments.

Meaning of "rel” attribute (A rel B} A, B : BITSET

?=" . A equal B

“#” : A not equal B (A -B) # 0

<" ACB& (ANB)=A

">":BCA& (ANB) =B

7<=" . NOT (A >B)< (ANB) # B

7>z : NOT (A <B)< (ANB) # A

result.boolean := opl.mode rel op2.mode;
TestMembership

ATTR ElemMode: Mode

ATTR cond: BOOLEAN

IN elem: DataOperand

IN set: DataOperand

ouT result: DataOperand

If cond s TRUE, it is tested whether the value given by elem is contained in the BITSET operand set. If
cond is FALSE | it is tested whether elem s not contained in set. ElemMode s the mode of elem. Returns
a BOOLEAN wvalue indicating the result.

IF cond THEN result.boolean := elem.ElemMode IN set.bitset

ELSE result.boolean := NOT (elem.ElemMode IN set.bitset)

END;

2.2.14 Control flow

PlaceLabel Goto

ATTR. lab: Label ATTR. target: Label
Defines the current location as the target of a Branches to target.
branch to the label 1ab. PC := target;
Switch

ATTR mode: Mode

ATTR lwh: LONGINT

ATTR uph: LONGINT

ATTR CaseLabels: ARRAY OF Label

ATTR DefaultLabel: Label

IN op: DataOperand

If the value given by op is in the range lwb .. upb the entry with indezx op - lwb of table CaseLabels s
selected and a branch occurs to that label. Otherwise a branch occurs to the label DefaultLabel. mode is
the mode of op.

IF lub <= op.mode <= upb THEN PC := CaseLabels [op]

ELSE PC := DefaultLabel END;

18 mobil-2.tex Rev: 2.1, released, June 09, 1993

2.2.15 Procedure call and parameter passing

MOBIL(-P)_

Test AndBranch FixedCompareAndBranch
ATTR cond: BOOLEAN ATTR mode: Mode
ATTR target: Label ATTR rel: Relation
IN op: DataOperand ATTR target: TLabel
Branches to target , if the value of the BOOLEAN IN opl: DataOperand
operand op s equal to cond. IN op2: DataOperand

IF op.boolean = cond
THEN PC := target END;

Compares opl and op2 according to relation rel.
mode is the mode the arguments. Branches to tar-
get if the test yields TRUE.

IF opl.mode rel op2.mode

THEN PC := target END;

FloatCompareAndBranch SetCompareAndBranch
ATTR mode: Mode ATTR rel: Relation
ATTR rel: Relation ATTR target: Label
ATTR target: Label IN opl: DataOperand
IN opl: DataOperand IN op2: DataOperand
IN op2: DataOperand Compares the BITSET operands opl and op2 ac-

Compares opl and op2 according to relation rel.
mode is the mode the arguments. Branches to tar-
get of the test yields TRUE.

IF opl.mode rel op2.mode

THEN PC := target END;

cording to relation rel. Branches to target if the
test yields TRUE. rel has the same meaning as in
SetCompare.

IF opl.bitset rel op2.bitset

THEN PC := target END;

PointerCompareAndBranch TestOddAndBranch
ATTR rel: Relation ATTR mode: Mode
ATTR target: Label ATTR cond: BOOLEAN
IN opl: DataOperand ATTR target: TLabel
IN op2: DataOperand IN op: DataOperand

Compares the POINTER values opl and op2 ac-
cording to relation rel. Branches to target if the
test yields TRUE.

IF opl.pointer rel op2.pointer

THEN PC := target END;

Tests whether ODD(op) evaluates to cond.
Branches to target if the test yields TRUE.
IF 0DD(op.mode) = cond

THEN PC target END;

TestMembershipAndBranch

ATTR ElemMode: Mode
ATTR cond: BOOLEAN
ATTR target: Label

IN elem: DataOperand
IN set: DataOperand

If cond s TRUE |, it is tested whether the value given by elem is contained in the BITSET operand set. If
cond s FALSE | it is tested whether elem is not contained in set. ElemMode s the mode of elem. Branches

to target if the test yields TRUE.

IF cond THEN IF elem.ElemMode IN set.bitset THEN PC := target END;
ELSE IF NOT (elem.ElemMode IN set.bitset) THEN PC := target END; END;

Rev: 2.1, released, June 09, 1993

mobil-2.tex

19

MOBIL(-P) 2 Definition of Mobil_

2.2.15 Procedure call and parameter passing

PreCall
ATTR. ParamSize: LONGINT
Begins a procedure or function call operation. Initializes a parameter list (parameter frame). This list
1s called the actual list until a corresponding PostCall instruction follows. The list is extended by Pass
instructions. The instructions surrounded by PreCall and PostCall may contain a nested call sequence.
Instde the enclosed sequence the actual parameter list 1s defined by that sequence. ParamSize specifies the
total size of data (in bytes) passed to the routine.
PUSH (CALLBASE);
ALLOCATE (CALLBASE, ParamSize);

PassValue
ATTR mode: Mode
ATTR offset: LONGINT
IN op: DataOperand
Copies the value of op to the actual parameter list. mode is the mode of the value. offset is the offset of
the parameter in the parameter frame.
M [CALLBASE + offset; size(mode)] := op.mode;

PassLongValue
ATTR size: LONGINT
ATTR offset: LONGINT
IN op: AddressOperand
Copies a long value to the actual parameter list. size specifies the size of the value (in bytes), offset is the
offset of the parameter in the parameter frame. op denotes the address of the value.
M [CALLBASE + offset; size] := M [op; size];

PassOpenArray Value
ATTR offset: LONGINT
IN op: AddressOperand

Copies the address od a data vector to the actual parameter list. offset s the offset of the address in the
parameter frame. (Although the data vector is passed as a value parameter it is not here but inside the
called procedure using a CopyOpenArray instruction.)

M [CALLBASE+offset; size(address)] := op;

PassStringValue
ATTR SourceLength: LONGINT
ATTR TargetLength: LONGINT
ATTR offset: LONGINT
IN opl: AddressOperand
Copies a string value to the actual parameter list. Sourcelength specifies the length of argument, TargetSize
specifies the length expected by the procedure. If SourceLength s less than TargetLength the argument string
has to be extended. offset is the offset of the parameter in the parameter frame. op denotes the address of
the string.
M [CALLBASE + offset; TargetLength] := M [op;max(Sourcelength,TargetLength)];

PassAddress
ATTR offset: LONGINT

IN op: AddressOperand
Copies the address given by op to the actual parameter list. offset is the offset of the address in the parameter
frame.
M [CALLBASE + offset; size(address)] := op;
Call

IN proc: DataOperand

Invokes the procedure or funcition given by proc using the actual parameter list.
PUSH(PC) ;

PC := proc;

20 mobil-2.tex Rev: 2.1, released, June 09, 1993

2.3.1 Mobil Grammar

MOBIL(-P)_

SysCall
ATTR sysproc: SysProc
Invokes a procedure of the Run Time System using the actual parameter list. sysproc specifies the procedure.
PUSH (PC);
PC := SYSPROCSTART (sysproc);
PostCall

ATTR ParamSize: LONGINT

Ends a procedure or function call operation. ParamSize specifies the total size of data (in bytes) passed to

the routine.
POP (CALLBASE);

FunctionResult
ATTR mode: Mode
ouT result: DataOperand

Returns the result of the immediately preceding function call. mode is the mode of the function result.

result.mode := FUNRES;

Return ReturnValue
ATTR. ParamSize: LONGINT ATTR mode: Mode
FErxit from the current procedure. ParamSize spec- ATTR ParamSize: LONGINT
ifies the total size of data (in bytes) passed to the IN opl: DataOperand

routine.
POP (VARBASE [NEST]);
POP (PARAMBASE [NEST]);

Exit from the current function. Let op be the result
of the function call. mode specifies the mode of the
result. ParamSize specifies the total size of data (in

POP (NEST);
POP (PC);

bytes) passed to the routine.
FUNRES := op.mode;

POP (VARBASE [NEST]);
POP (PARAMBASE [NEST]);
POP (NEST);

POP (PC);

2.3 Generating Mobil by MOCKA

The following sections shows some specifics of the Mocka compiler, generating Mobil instruction for a Modula-2
program.

2.3.1 Mobil Grammar

The following is a context free grammar, of how the Modula-2 front end calls the Mob:l instruction procedures.
Notice that the instruction procedures are called in postfix order for expressions. terminal denotes terminal
symbols, i.e. Mobil operators. [symbol] denotes zero or one occurrence, {symbol} zero or more occurrences of
symbol, (and) are used for grouping symbols. The nonterminal symbols Ezpr denotes a DataOperand while
Adr denotes an AddressOperand. The attributes of the operators are not shown.

Rev: 2.1, released, June 09, 1993 mobil-2.tex 21

MOBIL(-P) 2 Definition of Mobil_

MobilProgram ::= BeginModule {GlobalDecl | Procedure} EndModule.

GlobalDecl ::= DeclareModule | DeclareProcedure.

Procedure ::= BeginProcedure {CopyOpenArray} {Decl | Stmt} EndProcedure.

Decl ::= DeclareDataTempo | DeclareAddressTempo | DeclareLabel | DeclareString.
Stmt ::= Mark | PlaceLabel

Expr Adr Assign | Adr Adr AssignLong

Expr AssignDataTempo | Adr AssignAddressTempo

Adr Incl | Expr Adr Inc2 | Adr Decl| Expr Adr Dec2 |

Expr Adr Incl | Expr Adr Excl |

Expr SkipData | Adr SkipAddress

Goto | Expr TestAndBranch | Expr Switch |

Expr Expr FixedCompareAndBranch | Expr Expr FloatCompareAndBranch |
Expr Expr SetCompareAndBranch | Expr Expr PointerCompareAndBranch |
Expr Expr TestMembershipAndBranch | Expr TestOddAndBranch |
CallSequence | Return | Expr ReturnValue .

CallSequence ::= PreCall {PassParam} ProcCall PostCall.

ProcCall ::= Expr Call [FunctionResult] | SysCall.

PassParam ::= Expr PassValue | Adr PassLongValue | Adr PassOpenArrayValue
Adr PassStringValue | Adr PassAddress

Expr ::= ShortCardConstant | LongCardConstant | ShortIntConstant

LongIntConstant | RealConstant | LongRealConstant
CharConstant | BoolConstant
SetConstant | NilConstant | ProcedureConstant
UseDataTempo | Adr Content |
Expr FixedNegate | Expr Expr FixedPlus | Expr Expr FixedMinus
Expr Expr FixedMult | Expr Expr FixedDiv | Expr Expr FixedMod |
Expr FixedAbs
Expr Expr FloatPlus | Expr Expr FloatMinus | Expr Expr FloatMult |
Expr Expr FloatDiv | Expr FloatAbs
Expr Expr SetUnion | Expr Expr SetDifference | Expr Expr SetIntersection |
Expr Expr SetSymDifference | Expr Expr SetPlusSingle
Expr Expr Expr SetPlusRange
Expr Cap | Expr Float| Expr Trunc | Expr Adr | Expr Coerce
Expr Expr FixedCompare | Expr Expr FloatCompare | Expr Expr SetCompare
Expr Expr PointerCompare | Expr Expr TestMembership | Expr Test0dd |
CallSequence .
Adr ::= StringAdr | LocalVariable | Adr GlobalVariable | StaticVariable
LocalValueParam | LocalVarParam | LocalOpenArrayValueParam |
Adr GlobalValueParam | Adr GlobalOpenArrayValueParam |
Expr UsePointer | FrameBase | ParamBase | Adr AddOffset
Adr Expr Expr Expr Subscript | UseAddressTempo.

2.3.2 Procedure call

The Mocka compiler front end generates the Mob:l instructions of a function procedure call intermixed with the
expression’s instructions.

For example, the Mobil instructions for the assignment and function call x := 1 + £ (2); are generated in the
following sequence:

LongintConstant (1,opl);
PreCall (..);
LongintConstant (2, op2);
PassValue (op2,..);
ProcedureConstant ("f", op3);
Call (op3);
FunctionResult (.., op4);
PostCall (..);
FixedPlus (.., opl, op4, op5);
LocalVariable ("x", op6);
Assign (.., op6, op5);

Having the forest of expression tree view of Mobil, a function procedure call in an expression is side effect free,

22 mobil-2.tex Rev: 2.1, released, June 09, 1993

2.3.4 Procedure nesting MOBIL(-P)_

in the sence that the Mobil code for the function procedure call is not contained the expression’s Mobil tree.
The function’s value is used through the FunctionResult instruction.
The forest of the above example look like?:

PreCall
PassValue
LongintConstant (2)
Call
ProcedureConstant ("f'")
PostCall
Assign
LocalVariable ("x", ..)
FixedPlus
LongintConstant (1)
FunctionResult

In the tree view of Mobil, this fact has some bad consequences: If in an expression several functions are called,
it is not clear, which FunctionResult refers to which function call. Hence the Mobil code must be rewritten, if a
tree is constructed out of the in postfix order generated Mobil instructions: The operand opl generated by the
FunctionResult (..,op1) instruction is replaced (while constructing the tree view) by the operand op2 generated
by the following instruction sequence:

DeclareDataTempo (.., t1);
AssignDataTempo (.., t1, opl);
UseDataTempo (.., tl1, op2);

The operand op2 is now used in the tree, instead of the original op1, returned by Functionresult.
This replacement is not needed in the postfix view since the FunctionResult operator follows immediately the
Call instruction of the function which produces this result.

2.3.3 Parameter passing

The Mocka compiler generates the Pass instruction in a “right to left” fashion. The right most parameter of a
source program procedure call is passed first, the left most is passed as the last parameter.

2.3.4 Procedure nesting

If procedure @ is declared local to procedure P, @ is processed by Mocka before P. This fact may be used for
example, for not executing the interpreters PUSH / POP (PARAMBASE [level]) and PUSH / POP (VARBASE
[level]) instruction in the BeginProcedure / Return / Return Value instructions, if () doesn’t use variables declared
in P.

1The root is printed on the left margin, tree children are printed below its parent with some indentation.

Rev: 2.1, draft, June 09, 1993 mobil-p.tex 23

Chapter 3

Definition of Mobil-P

3.1 The Mobil-P interpreter

The abstract Mobil-P machine is a generalization of the Mobil interpreter. It main extension are the notion of
processes and channels. The parent process of a process P is that process, which created P. The main program
of a Modula-P program forms the “first” process of a program, it has obviously no parent process.

The Mobil-P interpreter uses the following data structures and operations:

PID Each process has a unique process identification (PID). Each PID has several attributes, described below.

ME is a special PID: the PID of the process executing ME. Most data structures and interpreter operations
have an parameter or qualifier PID. Ommitting this parameter or qualifier always refers to the ”current”
process, i.e. reads as pid = MFE.

pid.PARENT is the parent PID of the process pid!.

pid.PC refers to the Mobil-P instruction to be executed by process pid next.

Process pid executes the statements denoted by the PC| as long as PC' # 0. A process stops its execution
if PC = 0. Another process may assigning it a value # 0 which causes the execution that instruction (and
possibly following instructions).

pid.REP_VAL denotes the value of the replicator variable, used by the replicated process pid. If the process
pid is not replicated, this value is undefined.

CREATE NEW _PROCESS returns a new unique PID and assigns it to ME of that new process. It also
initializes the PC of the new process to 0, i.e. no statements are executed.

pid.CHILD denotes the PID returned by the last call to CREATE_NEW_PROCESS done by process pid.

pid.-WAIT FOR. denotes the number of child processes of the process pid has to be terminated, before it may
execute the instruction following its FndParallel instruction.

pid.VARBASE][i], pid. PARAMBASE][i], pid.STATICBASE [module], pid. CALLBASE,
pid.FUNRES, pid.NEST, pid.D[i], pid.A[i] are defined as for the Mobil interpreter. These data
structures are now local to each process. Ommitting the ¢ or module parameter denotes the entire data
object used by that process.

pid.RJ[i] There is an additional class of compiler generated variables, called replicator tempos. Their scope
is bound to the procedure declaring it. pid.R[i] denotes the i-th replicator tempo. A replicator tempo
consists of two fields: count and and walue (pid. R[i]. CNT and pid. R[i]. VAL, respectively).

pid.ALT _SKIP is a boolean flag, set to true, iff all boolean expressions of an ALT statement are evaluated to
FALSE.

Tthe phrase process pid is an abbreviation for: the process with PID pid.

24 mobil-p.tex Rev: 2.1, draft, June 09, 1993

3.2.2 Channel instructions MOBIL(-P)_

pid.ALT GUARD READY is a boolean flag, set to true, iff a guard of the ALT statement has become ready.

pid.ALT WAITING is a boolean flag, set to true, if the process is now waiting for a guard to become ready,
i.e. a WaitForReadyGuard instruction has been executed.

pid.ALT _SELECTED is a code address, referring to the alternative selected for execution.
M is the untyped memory of the machine. Notice: M as entire entity it is not local to any process.
CID Each channel has a unique channel identification (CID). Each CID has several attributes, described below.

cid.READY is a boolean flag: cid. READY = TRUE specifies that a process has reached a communication
statement for this channel and is now waiting until another process wants to communicate.

cid.ALT is a boolean flag: cid. ALT = TRUF specifies that a process (containg channel cid as a channel guard)
is executing an ALT statement and waits for communication.

cid.MSG is the message send by a process. ¢id.MSG is undefined if cid. READY = FALSE. A process may
send a message iff cid READY = FALSE and read a message iff cid READY = TRUE. Reading also
implies cid. READY := FALSE.

cid.PID specifies the PID of the process reaching a communication statement (for channel cid) first. The first
process suspends itself and is activated by the second one. c¢id. PID is defined iff ¢cid. READY = TRUE.

cid.NEXT specifies the instruction of process cid. PID to be executed after activating it, i.e. the instruction
after the communication statement, which caused its suspension. cid. NEXT is defined iff cid. READY =
TRUE.

OPEN returns a new CID.

CLOCK is a clock (implemented outside of the interpreter). It has several attributes, described below.
CLOCK.SYSTIME returns the current system time. Notice, this must not be a global time for all processes.
CLOCK.ALT [pid] is a boolean value is true, iff process pid uses a time guard in an ALT statement.
CLOCK.DELAY [pid] is a boolean value is true, iff process pid has suspended itself for some time.

CLOCK.TIME [pid] if CLOCK.ALT [pid] or CLOCK.DELAY [pid] is TRUE, specifies that process pid has
to be activated if CLOCK.SYSTIME is later than CLOCK.TIMFE [pid].

CLOCK.NEXT[pid] if CLOCK.ALT [pid] or CLOCK.DELAY [pid] specifies the instruction to be executed,

if the clock activates process pid.

The set of interpreter instructions given of one Mobil-P instruction are atomic, in the sense that at one time
only one process may access attributes of the data structures, for example the channel attributes.

Notation example: cid. PID.ALT_READY_GUARD specifies the attribute ALT_READY_GUARD of the process
cid. PID.

Some Mobil instructions are now in some aspect “process local”, e.g. StaticVariable now refers to
ME.STATICBASE [module] + offsel. But ME.STATICBASE [module] may be copied form the parent pro-

cess (in case of a local Modula-P process) or is new allocated (in case of a global Modula-P process).

3.2 The Mobil-P instructions

3.2.1 Declarations

PROCEDURE DeclareReplicatorTempo

VAR tempo: ReplicatorTempo
Declares a new replicator temporary variable. Its scope is bound to the current compiled procedure.

Rev: 2.1, draft, June 09, 1993 mobil-p.tex 25

M

OBIL(-P)

3 Definition of Mobil-P_

3.2.2 Channel instructions

OpenChannel

IN channel: AddressOperand

Opens the channel for communication.

cid : CID;

cid := OPEN;

cid.READY := FALSE;

cid.ALT := FALSE;

M[channel;size(CHANNEL)] := cid;

Receive ReceiveLong

ATTR mode: Mode IN channel: AddressOperand
IN channel: AddressOperand IN dest: AddressOperand
IN dest: AddressOperand IN size: DataOperand

Recewve a value with mode mode from channel chan-

nel and stores it in memory starting with address

dest. If another process waits for sending a mes-

sage, actwate 1. If no other process want to send a

message, suspend MFE and signal "receiver ready”.

cid : CID;

cid := M[channel;size(CHANNEL)];

IF cid.READY = TRUE

THEN (* partner is ready and suspended *)
cid.PID.PC := cid.NEXT; (* activatex)

ELSE (* suspend me and signal *)

cid.NEXT := CODEADDR (L);
cid.READY := TRUE;
PC := 0; (* suspend ME *)
END;
L: M[dest;size(mode)] := cid.MSG;
cid.READY := FALSE;

Recewve size bytes from channel channel and stores
them in memory starting with address dest. If an-
other process waits for sending a message, activate
it. If no other process want to send a message, sus-
pend ME and signal "receiver ready”.
cid : CID;
cid := M[channel;size(CHANNEL)];
IF cid.READY = TRUE
THEN (* partner is ready and suspended *)
cid.PID.PC := cid.NEXT; (* activate *)
ELSE (* suspend me and signal *)
cid.NEXT := CODEADDR (L);
cid.READY := TRUE;
PC := 0; (* suspend ME *)
END;
L: M[dest;size.longcard] :=
cid.READY := FALSE;

cid.MSG;

26

mobil-p.tex

Rev: 2.1, draft, June 09, 1993

3.2.4 Parallel statements

MOBIL(-P)_

Send SendLong
ATTR mode: Mode IN channel: AddressOperand
IN channel: AddressOperand IN source: AddressOperand
IN value: DataOperand IN size: DataOperand

Sends a value with mode over the channel.
If another process waits for receiving a message, ac-
tivate 1.
If no other process want to receive a message, sus-
pend ME and signal "sender ready”.
cid : CID;
cid := M[channel;size(CHANNEL)];
cid.MSG := op.mode;
IF cid.READY = TRUE
THEN (* partner is ready and suspended *)
c¢id.PID.PC := cid.NEXT; (* activate *)
ELSE (* suspend me and signal *)
cid.READY := TRUE;
IF cid.ALT = TRUE
THEN (* check for waiting ALT *)
cid.PID.ALT READY GUARD := TRUE;
IF cid.PID.ALT WAITING = TRUE THEN
¢id.PID.PC := cid.NEXT; (* activate *)
END;
END;
cid.NEXT := CODEADDR (L);
PC := 0; (* suspend ME *)
END;
L: (* next instruction *)

Sends size bytes starting in memory from address
src to the channel. If another process waits for re-
ceiving a message, activate 1. If no other process
want to receive a message, suspend MFE and signal
"sender ready”.
cid : CID;
cid := M[channel;size(CHANNEL)];
cid.MSG := M[source;size.longcard];
IF cid.READY = TRUE
THEN (* partner is ready and suspended *)
¢id.PID.PC := cid.NEXT; (* activate *)
ELSE (* suspend me and signal *)
cid.READY := TRUE;
IF cid.ALT = TRUE
THEN (* check for waiting ALT *)
cid.PID.ALT READY GUARD := TRUE;
IF cid.PID.ALT WAITING = TRUE THEN
¢id.PID.PC := cid.NEXT; (* activate *)
END;
END;
cid.NEXT := CODEADDR (L);
PC := 0; (* suspend ME *)
END;
L: (* next instruction *)

3.2.3 Timer instructions

GetSysTime

Delay

IN dest: AddressOperand
Reads the system time and stores it in memory.
M[dest;size(TIME)] := CLOCK.SYSTIME;

Rev: 2.1, draft,

June 09, 1993

IN time: DataOperand

Delays the current process until the system time is
later than the time specified by time.
CLOCK.DELAY[pid] := TRUE;

CLOCK.TIME[pid] := time.time;
CLOCK.NEXT[pid] := CODEADDR (L);

PC := 0;

L: CLOCK.DELAY[pid] := FALSE;

mobil-p.tex

27

MOBIL(-P) 3 Definition of Mobil-P_

3.2.4 Parallel statements

BeginParallel EndParallel
ATTR. Nextlnstr: Label ATTR Nextlnstr: TLabel
Indicates the beginning of a parallel statement. Indicates the end of a parallel statement. The cur-
NextInstr indicates the statement to be executed af- rent process is suspended, until all child processes
ter all child processes have been terminated. have terminated.
ME.WAIT FOR = 1; ME.WAIT FOR := ME.WAIT FOR -1;

IF ME.WAITFOR > O

THEN (*there are non terminated children*)
ME.PC := 0; (* stops execution now *)

ELSE (* all children are terminated *)
ME.PC := CODEADDR (NextInstr);

END;

BeginProcess
Indicates the start of the process body.

EndProcess
ATTR. NextInstr: TLabel
Indicates the end of the process body. nextInstr specifies the instruction to be executed, by the parent process
after all child processes of it has been terminated.
ME.PARENT.WAIT FOR := ME.PARENT.WAITFOR - 1;
IF ME.PARENT.WAITFOR = O THEN (* all children have terminated *)
ME.PARENT.PC := NextInstr; (* activates parent *)

END;
ME.PC := 0;
StartProcess

ATTR processLab: Label

ATTR. replicated: BOOLEAN

ATTR RepTempo: DataTempo

Starts a child process. If it is a replicated process, the replicator variable of the child process gets its value
assigned.

ME.WAIT FOR := ME.WAITFOR + 1;

CHILD := CREATE_NEW_PROCESS;

CLOCK.DELAY[CHILD] := FALSE;

CLOCK.ALT[CHILD] := FALSE;

CHILD.VARBASE := ME.VARBASE; (* copies var base *)
CHILD.PARAMBASE := ME.PARAMBASE;

CHILD.STATICBASE := ME.STATICBASE; (* for all modules *)
IF replicated THEN CHILD.REP VAL := R [RepTempo].VAL END;
CHILD.PC := processlLab; (* starts of child execution now *)

28 mobil-p.tex Rev: 2.1, draft, June 09, 1993

3.2.6 The ALT statement MOBIL(-P)_

StartGlobalProcess
IN proc: DataOperand
IN processorNr: DataOperand

ATTR. ParamSize: LONGINT
proc denotes a ProcedureConstant, which denotes the body procedure of a process module
The earliest point the all imported modules are known s linking or interpreting time.
processorNr codes an information used by a runtime system supporting the real execution of Mobil-P pro-
gram. Iis intended meaning is the number of a processor the code has to be executed, or a strategy how to
determine this number.
FORALL m € {module (transitively) imported by process module proc} DO
ALLOCATE (STATICBASE [m], static_var_size (m));
END;
PUSH(PC) ;
ALLOCATE (CHILD.CALLBASE, ParamSize);
CHILD.CALLBASE := ME.CALLBASE;
PC := proc;

3.2.5 Replication

InitReplication
ATTR RepTempo: DataTempo
ATTR EndLab: Label
IN lwb: DataOperand
IN upb: DataOperand

Inttializes the replicator temporary variable.

R[RepTempo] .CNT := ORD(upb.mode) - ORD(1lwb.mode) + 1;
R[RepTempo] .VAL.mode := lpb.mode;

R[RepTempo] .CNT < 0 THEN PC := EndLab END;

DoReplication

ATTR RepTempo: DataTempo

ATTR StartLab: Label

ATTR EndLab: Label

Implements loop for replication.

R[RepTempo] .CNT := R[RepTempo] .CNT - 1;

INC (R[RepTempo] .VAL.mode);

IF R[RepTempo] = 0 THEN PC := EndLab ELSE PC := StartLab; END;

UseProcessRepVal
ATTR level diff: CARDINAL
ouT RepValue: DataOperand
Access the value of the replicator variable of a replicated process. level diff = 0: means the value of the
replicator variable of this process. level diff = n means the replicator variable with level_diff = n-1 of the
parent, v.e. the ”level_ diff” grand parent.
RepValue.mode := ME.PARENT.---.PARENT.REP VAL .mode;
(* where PARENT occurs level_diff times. *)

Rev: 2.1, draft, June 09, 1993 mobil-p.tex 29

MOBIL(-P)

3 Definition of Mobil-P_

3.2.6 The ALT statement

BeginAltInput

EndAltInput

ATTR ContainsTimer: BOOLEAN
Indicates the beginning of of a ALT statemeni. Con-
tainsTimer s TRUF, iff an input of the TIMER is
part of a guard of this ALT statement.

ATTR ContainsTimer: BOOLEAN

Indicates the end of the enable / wait / disable se-
quence. ContainsTimer s TRUF, iff an input of
the TIMER is part of a guard of this ALT statement.

ME.ALT_GUARD READY := FALSE; Jumps to the instructions of the selected alternative.
ME.ALT WAITING := FALSE; PC := ME.ALT_SELECTED;
CheckBoolGuard CheckAlt
ATTR check_tempo: DataTempo ATTR check_tempo: DataTempo
IN bool_val: DataOperand ATTR. else_label: Label
ouT result: DataOperand If the value stored in check_tempo is FALSE, then

The check, that at least one boolean expression of
an ALT statement 1s true, is done incrementally, by
a 'OR’ of the value stored in check_tempo and the
bool _val.
D[check_tempo] .bool
OR bool_val.bool;
result.bool := bool_val.bool;

:= D[check _tempo] .bool

the code marked with else_label will be executed,
after all alternatives are disabled. This includes,
that the following alternative input statements are
skipped. If this value 1s TRUF, the next instruction
15 executed.
IF check_tempo.bool = FALSE THEN

PC := CODEADDR (else_label);
END;

WaitForReadyGuard
ATTR WaitLab: Label
ATTR ContainsTimer: BOOLEAN

If no guard is already ready, suspends the process and waits for a guard to become ready. If a guard is
ready, execute the instruction marked with WaitLab. ContainsTimer is TRUF, iff an input of the TIMER

is part of a guard of this ALT statement.
IF ME.ALT_GUARD READY = FALSE THEN

ME.ALT WAITING := TRUE;
ME.PC := 0;
ELSE ME.PC := CODEADDR (WaitLab);
END;
EnableSkip DisableSkip
ATTR WaitLab: Label ATTR target: Label
IN bool_expr: DataOperand IN bool_expr: DataOperand

This guard 1s ready, if the bool_expr is true. Wait-
Lab specifies the insiruction to be executed, if the
processes is activated (here it may be not needed).
IF bool_expr.bool = TRUE THEN

ME.ALT _GUARD READY := TRUE;
END;

IF bool_expr.bool = TRUE THEN
ME.ALT SELECTED := CODEADDR (target);
END;

30

mobil-p.tex

Rev: 2.1, draft, June 09, 1993

3.3.1 The Mobil-P grammar MOBIL(-P)_
EnableChannel DisableChannel
ATTR WaitLab: Label ATTR target: Label
IN bool_expr: DataOperand IN bool_expr: DataOperand
IN channel: AddressOperand IN channel: AddressOperand

If bool_expr evaluates to TRUE, informs the chan-
nel channel that it is used in an ALT statement;
otherwise nothing happens. WaitLab specifies the
instruction to be executed, if the processes is acti-
vated by a sender.

cid : CID;

cid := M[channel;size(CHANNEL)];

IF bool_expr.bool = TRUE THEN

If bool_expr evaluates to TRUFE and a sender is
waziting the corresponding alternative will be se-
lected. If no sender is ready, informs channel chan-
nel that it is no longer used in a guard. [IF the
bool_expr evaluates to FALSFE, nothing happens.
cid : CID;

cid := M[channel;size(CHANNEL)];

IF bool_expr.bool = TRUE THEN

cid.NEXT := CODEADDR (WaitLab); IF cid.READY = TRUE THEN
cid.ALT := TRUE; ME.SELECTED := CODEADDR (target);
IF cid.READY = TRUE END;
THEN (* partner is suspended*) cid.ALT := FALSE;
ME.ALT READY := TRUE; END;
END;
END;
EnableTimer DisableTimer
ATTR WaitLab: Label ATTR target: Label
IN bool_expr: DataOperand IN bool_expr: DataOperand
IN time_expr: DataOperand IN time_expr: DataOperand

If the bool_expr evaluates to TRUF, and the sys-
tem time becomes later than time_expr.time then
this guard becomes ready. WaitLab specifies the in-
struction to be executed, if the processes is activated
by the clock.

IF bool_expr.bool = TRUE THEN

If bool_expr evaluates to TRUFE and the system
time is later than the time time_expr than the
corresponding alternative will be selected. IF the
bool_expr evaluates to FALSE, nothing happens.
IF bool_expr.bool = TRUE THEN

IF CLOCK.SYSTIME > time_expr.time THEN

CLOCK.ALT[ME] := TRUE; ME.SELECTED := CODEADDR (target);
CLOCK.NEXT[ME] := CODEADDR (WaitLab); END;
CLOCK.TIME[ME] := time_expr.time.time; CLOCK.ALT := FALSE;
END; END;
BeginAlternative EndAlternative

Indicates the beginning of an alternative

ATTR NextInstr: Label

Indicates the end of the alternative. Jumps the in-
struction marked by NextInstr.

PC := CODEADDR (NextInstr);

3.3 Generating Mobil-P by MOCKA-P

The following sections shows some specifics of the Mocka-P compiler, generating Mobil instruction for a Modu-
la-P program.

3.3.1 The Mobil-P grammar

Some syntax rules are extended:

Rev: 2.1, draft, June 09, 1993 mobil-p.tex 31

MOBIL(-P) 3 Definition of Mobil-P_

Decl | DeclareReplicatorTempo.
Expr ::= ... | UseProcessRepVal.

Stmt = | Adr OpenChannel | Adr Adr Receive | Adr Adr Expr ReceiveLlong |
Expr Adr Send | Adr Adr Expr SendLong |
Adr ReadTimer | Expr Delay |
BeginAlt {Enable} Wait {Disable} EndAlt {Alternative} PlacelLabel |
BeginParallel {CreateProcess} EndParallel {ProcessBody} Placelabel |
Enable ::= [StartReplication] Expr CheckBoolGuard
(EnableSkip | Adr EnableChannel | Expr EnableTimer)
[EndReplication].
Wait ::= CheckAlt WaitForReadyGuard.
Disable ::= [StartReplication] Expr
(DisableSkip | Adr DisableChannel | Expr DisableTimer)
[EndReplication].
Alternative ::= BeginAlt [Receive | ReceiveLong] {Stmt} EndAlt.
CreateProcess ::= [StartReplication] StartProcess [EndReplication].
ProcessBody ::= Placelabel BeginProcess ({Stmt} | GlobalProcess) EndProcess.
GlobalProcess ::= PreCall {PassParam} StartGlobalProcess PostCall.
StartReplication ::= DeclareReplicatorTempo Expr Expr InitReplication PlaceLabel.
EndReplication ::= DoReplication PlaceLabel.

3.3.2 Parallel statements

For a PAR statement the compiler front end emits the following additional instructions: For each process body
and for the instruction following the PAR statement a label is declared. Replicated processes are implemented
by surrounding StartProcess by a loop. For each replicated process a replicator tempo and two labels (for start
and end of the loop) are declared.

3.3.3 The ALT statement

The ALT statement is translated into a sequence of Enable instructions. They inform the channel or timer, that
they are used in a guard. Then the process must wait, until a guard is ready. After the process returns from
waiting, the guards must be disabled, to inform them that they are no longer part of a guard. During disabling
it is deceided which alternative out of the set of ready ones is selected for execution. After the enable - wait -
disable instructions the instructions of the alternative bodies is emitted. An Alternative ends by branching to
the instruction following the ALT statement.

The interpreter forces a specific strategy (the last disabled alternative), but the real implementation may choose
the alternative arbitrary.

For a ALT statement the compiler front end emits the following additional instructions: For each alternative
body, for the instruction following the ALT statement, and for the ELSE part a label is declared. If the FLSFE
part is missing, instructions for calling the AltError system procedure are generated.

For checking the boolean expressions of guards one data tempo is declared and assigned to FALSE, it is used by
the CheckBoolGuard and CheckAlt instructions. If the boolean expression is ommitted in the source program,
the front end inserts a BooleanConstant with value TRUF.

Replicated alternatives are implemented by surrounding the Fnable / Disable instructions by a loop. For each
replicated alternative a replicator tempo and two labels (for start and end of the loop) are declared.

The arguments of the (non-replicated) Fnable / Disable instructions are computed once and then stored in
tempos, which are created by the front end. For replicated alternatives the arguments of the Disable instruction
are recomputed each time.

The first action of an alternative with a channel guard is to read message from the channel, then the code for
the alternative follows.

3.4 Transputer machine instructions
To implement for a Transputer [INMOS 88a] based system runtime system efficiently, some of the basic Trans-

puter instructions should be directly available in a Modula-P program. Since the Mocka-P system doesn’t
has an inline assembler, these Transputer instructions are provided by a module, known to the compiler, like

32 mobil-p.tex Rev: 2.1, draft, June 09, 1993

3.4 Transputer machine instructions MOBIL(-P)_

the SYSTEM module. The semantics of these Transputer instructions is defined in the Transputer manuals
[INMOS 88a, INMOS 88b].

Transputer _ OUT Transputer_OUTB
IN link: DataOperand IN link: DataOperand
IN size: DataOperand IN wval: DataOperand
IN src: DataOperand implements the outb Transputer instruction.
implements the out Transputer instruction.
Transputer OUTW Transputer_IN
IN link: DataOperand IN Tlink: DataOperand
IN wval: DataOperand IN size: DataOperand
itmplements the outw Transputer instruction. IN dest: DataOperand
implements the in Transputer instruction.

Transputer MOVE
IN source: DataOperand
IN size: DataOperand
IN dest: DataOperand
tmplements the move Transputer instruction.

Rev: 2.1, released, June 09, 1993 mobil.tex 33

Bibliography

[Emmelmann ® 2 89] Helmut Emmelmann, F. W. Schréer, and Rudolf Landwehr. Beg — a generator for efficient

[INMOS 88a]

[INMOS 88b]
[Schréer 88a]
[Schréer 88b]

[Vollmer 89a]

[Vollmer 89b]

[Vollmer ¢ ¢! 92]

[Wirth 85]

34

back ends. ACM SIGPLAN NOTICES, 24(7):227-327, July 1989.

INMOS, editor. The Transputer insiruction set - a compiler writers’ guide. Prentice—
Hall, Inc., 1988.

INMOS. The Transputer reference manual. Prentice—Hall, Inc., 1988.
F.W. Schréer. Das GMD Modula-2 Entwicklungssystem. GMD-Spiegel, 1/1988.

F.W. Schroer. Mobil: An intermediate language for portable optimizing compilers. draft
of an unpublished internal paper, 1988.

Jiirgen Vollmer. Kommunizierende sequentielle Prozesse in Modula-2; Entwurf und Im-
plementierung eines Transputer — Entwicklungssystems. Master’s thesis, Universitat
Karlsruhe, May 1989.

Jurgen Vollmer. Modula-P, a language for parallel programming. Proceedings of the
First International Modula-2 Conference October 11-13, 1989, Bled, Yugoslavia, pages
75-79, 1989.

Jurgen Vollmer and Ralf Hoffart. Modula-P, a language for parallel programming; defi-
nition and implementation on a transputer network. In Proceedings of the 1992 Interna-
tional Conference on Computer Languages ICCL’92, Oakland, California, pages 54—64.
IEEE, IEEE Computer Society Press, Los Alamitos, California, April 1992.

Niklaus Wirth. Programming in Modula-2. Springer Verlag, Heidelberg, New York, third,
corrected edition, 1985.

mobil.tex Rev: 2.1, released, June 09, 1993

